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LETTER TO THE EDITOR 

Quantum and classical statistical mechanics of the 
sinh-Gordon equation 
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5 Department of Mathematics, UMIST, PO Box 88, Manchester M60 IQD, UK 
/I Department of Physics, University of Jyvaskyla, 40100 Jyvaskyla, Finland 

Received 27 June 1986 

Abstract. We give two fundamental methods for quantum or classical free energies of 
integrable models. Periodic boundary conditions induce an integral equation for classically 
allowed momenta. Generalisations of the Bethe ansatz and a method of functional integra- 
tion on the classical action in action-angle variables follow, giving identical (Bose-Fermi 
equivalent) results. For sinh-Gordon the Bose classical limits agree with the transfer integral 
method. 

In covariant form the classical sinh-Gordon equation (sinh-G) is 

4w - c + ~ ~  = m2 sinh 4 (1) 

where = d24/dx2, etc, and I)) is a mass ( h  = c = 1). By the transformation 4 -j 4 4  
it becomes the classical sine-Gordon equation (s-G). Both sinh-G and s-G are classical 
integrable models solvable by the inverse scattering (spectral transform ( ST)) method 
[ 11. Both are Hamiltonian systems and both are Liouville integrable with a complete, 
continuously infinite, set of commuting independent constants of the motion which 
form action variables [ 1-31. However, on all of --CO < x <-CO, the s-G has soliton (kink, 
antikink and breather) solutions: the sinh-G has no soliton solutions. 

The normally ordered quantum s-G at zero temperature p-' = T = 0 has been solved 
for its eigenspectrum and eigenstates by the methods of the Bethe ansatz (BA) and 
quantum inverse method (QIM) [4,5] (see also [2]). The quantum statistical mechanics 
of the s-G is available as a system of coupled integral equations [6] which have now 
been partially solved in the classical limit [7]7. No such results are available for 
quantum or classical sinh-G at T > 0 or T = 0. But although it is the statistical mechanics 
of s-G which is relevant to experiment so far [9], the very explicit connection of sinh-G 
to s-G (see below), and its relative simplicity, makes it ideal for study. In this letter 
we report two new, different and fundamental methods of calculating the quantum 
and classical free energies of a whole class of integrable models; we use sinh-G as one 
example of these. In another communication [8] we will generalise both methods to 
the still larger class which includes s-G. 

t On leave from UMIST, Po Box 88, Manchester M60 lQD, UK. 
7 Fowler and his colleagues now report what we show is a complete solution in the classical limit [SI. We 
are grateful to Professor Fowler for conveying his results to us by telephone. 
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The two fundamental methods we report are a method of functional integration 
and a method of integral equations generalising the BA method-which, however, 
makes no ansatz whatsoever. The classical free energy for sinh-G can be calculated 
from the functional integral 

2 = 9dn94 exp(-PH[+]) (2) 5 
by a method already available: the transfer integral method (TIM) [2,10]. For sinh-G 
the classical Hamiltonian H[4] is 

H [ 4 ]  = yo1 1 [i&I’+~+~+ m2(cosh 4 - I ) ]  dx (3) 

with Poisson bracket {dn, 4 }  = 6(x - x’); yo is a dimensionless coupling constant. We 
find a result by the T I M  which coincides with that Me give (in (13) below) as the joint 
result in the classical limit of the two new quantum theoretical methods reported in 
this letter. Thus the TIM serves to check these methods. Connections with s-G are 
then that H[4] for s-G follows from (3) by 4 + 4 4 ,  yo+ -yo  and the classical free 
energy of s-G can be found from (13) by analytical continuation in yo. 

Both the methods we report in this letter exploit the fact that under the ST a classical 
integrable system like sinh-G undergoes a canonical transformation to action-angle 
variables [I-31. Thus (3) transforms to 

Q 

W P l =  i_i w ( k ) P ( k )  dk (4) 

in which w (  k )  = (m2+ k2)”*. The P ( k ) ,  0 s  P ( k )  < 00, are action variables and the 
Q ( k ) ,  OG Q < ~ T ,  are angle variables. Also {P, Q }  = S ( k -  k ’ ) .  In these variables the 
quantum functional integral Z for sinh-G is [2] 

2 = J- 9’I.L exp(S[pI) 

in which S[p] is the Wick rotated classical action 

S[p] = h-’ lohp d i  (i  dk P ( k ) Q ( k ) ,  - H [ p ] )  
--cc 

and 9 p  Q: 9BQ: the classical limit, which when correctly handled 
(2), sets h + 0 and so replaces S [  p] by - P H [  p] [2]. 

(5) 

( 6 )  

is equivalent to 

The Hamiltonian (4) for sinh-G is particularly simple since it represents a bunch 
of harmonic oscillators [2]. However, the action variables are determined by the spectral 
data of the classical ST method [l-31 and it is the quantum operator forms of these 
spectral data which underlie both the Q I M  [4,5] and the BA method [4,5]. Therefore 
it becomes important to draw the connection between the BA, Q I M  and methods of 
functional integration involving the classical action S [  p ]  and the classical spectral 
data. We do this for the large class of integrable models with Hamiltonians like (4) 
by doing it explicitly for sinh-G in this letter. 

The two methods of calculation we report are functional integration using action- 
angle variables exemplified by ( 5 )  and ( 6 )  and a method which follows, but generalises, 
the method of BA pioneered by Yang and Yang [ll]. This concerned the quantum 
statistical problem of N + 1 bosons on a line with repulsive SIfunction interactions of 
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strength c > 0: as is well known [2,5] this is the case of the quantised normally ordered 
repulsive non-linear Schrodinger equation ( NLS). We show how our results for sinh-G 
correspond to those for quantum NLS: the connection in the classical limit is also 
drawn. The essential point is that the classical NLS has action-angle variables P, Q 
and Hamiltonian (4) with w (  k )  = k2. 

Both methods depend on the need to impose periodic boundary conditions, of 
period L < m ,  on the problem. From this a proper thermodynamic limit is achieved 
at finite density for L+m. Without reinterpretation (4) is not at finite density: it is 
derived [ 1-31 for C#J on the real line with decaying boundary conditions at infinity and 
action-angle variables for sinh-G (or s-G) have not been available for periodic boundary 
conditionst. A main point of this letter is to show how periodic boundary conditions 
are imposed on both methods so that, e.g., the functional integral ( 5 )  and its classical 
limit are evaluated in proper limit at finite density. 

Here it is convenient to report the generalisation of the BA method first and the 
functional integral method second. We have used classical Floquet theory [2, 121 (see 
also the references in [2,4]) to show that under periodic boundary conditions of large 
period L the Hamiltonian (4) for classical sinh-G is not free but is constrained by the 
condition for allowed wavevectors in (n, m integers) 

LC,, = 2an - 1 ~(i,, ,  LIP,,, +o(L-') .  (7) 
m # n  

Under these conditions the analysis of the relevant lattice? of spacing a and period 
( N  + 1)a = L ( N  is even for convenience) shows that (4) is replaced by ( - iN  G n s $ N )  

and P, - P(k)27rL-'. To O(L-') we can use the analytical properties of the trans- 
mission coefficient a ( 5 )  [l-31 associated with the ST on the real line in classical form 
to show that for sinh-G A(k, k') is given by 

H [ p ] = C  o ( i n ) P n + o ( L - ' )  (8) 

Ab(&, k' )  = - im2yo[kw(k' )  - k'w(k) ] - '  (9) 
which is recognisable as a classical propagator for phonons of arbitrary amplitude [2]. 
Moreover, for the quantum case we have calculated the phase shift A to be$ A (  k, k') = 
-2 tan-'{m2 sin(Qyg)[kw(k') -k'w(k)]-'} in which yg = yo(l + y 0 / 8 ~ ) - '  and this two- 
body S-matrix phase shift coincides with s-G for yo+-yo  [4]. It now becomes 
important to distinguish 'Bose' shifts Ab and 'Fermi' shifts Af [2,5]. For, in contrast 
with previous work [5,11], (9) shows we must use the Bose form A =  Ab(k, k') = 
Af-2aB(k'-k) in which 8(k) = O ( k < O )  = l (k>O).  Thus Af is the smooth branch of 
A in which A + - 2 a ( k + - m )  and +O(k++m) (cf [5]), while A=Ab+O(k+km) 
reducing to (9) in the 'classical limit' yo+ 0. 

For the functional integral method (see below) P,,, and Qm (Os Qm <27r) are 
canonical: {Pm, Om) = 8 m n .  But one can also see, and show, that P, plays the role of 
a particle density. To ensure a finite (boson) density p ( k )  for L+m,  let L-'Pm+ 
L-'(2aL-'P(En))-p(k) dk for L+m. Let LnL+ h(k)L and k. =2anL-'+ k for L+ 
00. The density of states f ( k )  = (27r)-' dh/dk, so for L+co (7) means 

m 

2 ~ f ( k )  = 1 - I-, (dAb/dk)p(k') dk'. (10) 

t We shall report elsewhere variables of this type for both a lattice sinh-G and a lattice s-G under periodic 
boundary conditions. 
$ To this end we have given a BA-QIM analysis for quantum sinh-G which is to be reported elsewhere. 
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Following Yang and Yang [ 113, but using Bose rather than Fermi particles, the entropy 
SL-'perunitlengthisSL-'=j?m[(f+p) ln ( f+p)- f ln  f - p  lnp]  dkas  L+m. From 
(4) and (8) the energy EL-' =ITm w ( k ) p ( k )  dk. Note how w ( k )  replaces w ( i )  since, 
by (7), terms correcting this are O( L-I). We now minimise the free energy FL-' = 
( E  - p - ' S ) L - '  with respect to p. This reduces (10) to an integral equation. Then, if 
we conveniently define a boson energy E ( k )  by fp-'+ 1 exp( PE(k)), this becomes 

m 

~(k)=w(k)+(27rp) - '  (d&(k, k')/dk) In[l -exp(-pe(k'))] dk' (1 la )  L 
while the free energy is 

m 

FL-' = ( 2 7 4 - l  ln[l -exp(-@(k))] d k  (1lb) La 
We note that if Ab = -2 tan-'[c(k - k')-'] and Af is the branch of the tan-' which 

+ -27r ( k  + -00) and + 0 ( k  + +CO) (the appropriate branch of the S-matrix phase shift 
for quantum NLS in fermion description [5,11]) equations (11) are boson forms of the 
Yang and Yang result [ 113 providing U (  k)  = k2t.  Indeed, quite generally, i.e. for any 
w ( k ) $  and Ab, since dAb/dk = dA,/dk -27r8(k), one can usefully define fermion ener- 
gies E (  k) by In[ 1 + exp(-pE( k))] = -In[ 1 - exp( --PE( k))]. Also with ii = NL-' = 

p ( k )  dk, one can minimise the negative pressure - p  = FL-' - pNL-' instead of 
FL-' to find from (1 1) the exact forms found [ 111 

m 

E ( k )  =w(k)-p+(27rp)- '  dAXk, k')/dk'ln[l+exp(-pE(k'))] dk' (12) I_, 
with FL-' = pii - (27rp)-' ITm In[l +exp(-pE(k))] dk and p the chemical potential. 
New features from [ 113 are therefore the calculation for sinh-G and the Bose descrip- 
tion. But the real point is the reliance on (4) and the Floquet results (7) and (8); 
evidently the argument applies to all (1 + 1)-dimensional integrable models without 
soliton solutions$. In particular, for sinh-G, Af is the smooth branch of the quantum 
A and o ( k )  = ( m 2 +  k2)1'2; for NLS, Af is the smooth branch of -2 tan-'[c(k - k')-'] 
and w ( k )  = k2. 

The Bose-Fermi equivalence of the two quantum forms (11) and (12) has many 
interesting facets-particularly for quantum NLS [5] and quantum sinh-G at T >  0 and 
T = 0 .  The quantum eigenspectra follow at T=O [5]. Here we merely note that the 
Bose form (11) has the easy classical limit in which In( p ~ ( k ) )  replaces ln[l - 
exp(-ps(k))]. With Ab given by (9) for sinh-G, iteration yields 

FL-'= m p - ' [ t ! M p ) - ' - ~ ( M p ) - 2 + ~ ( M p ) - 3 - - ( M p ) - 4 + '  * * ]+FKG (13) 
where FKG p-'a-'(ln p a - ' + ; m a )  and M = 8my;'. For FKG in this form we must 
use the dispersion relation w ( k )  for a linear Klein-Gordon lattice as the lattice theory 
shows: F K G  must depend on the lattice spacing a because of the classical limit. The 
strictly asymptotic series (13) is exactly what we derive by using the TIM on (2) with 
Hamiltonian (3). By analytical continuation in yo (so that yo+ -yo)  (13) becomes the 
free energy of s-G which contains additional soliton contributions [ 141. In principle 
an expression like (13) is similarly found from (1 1) in the classical limit for the NLS, 
but iteration is not possible in this case. 

t Wadati [13] reports the particular calculation for NLS in this form. 
$ The linear dispersion relation o ( k )  wholly determines the classical integrable model [l]. 
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We are now in a position to illustrate the second, functional integration, method. 
With ( 5 )  in the classical limit as our first example our procedure is to discretise the 
classical action -/3H[p] so that 

Z =  N-m lim (27r)-"+" 1 ...I n = - i N  dP,,dQ,,exp(-p n = - $ N  +f w ( i n ) P , , )  (14) 

with ( N +  1)a  = L. The P,, are now interpreted as action variables with canonical on: 
the normalisation corresponds to h = 27r for each oscillator mode label n. The funda- 
mental point now is that the constraint on the allowed modes in is still given by the 
periodicity condition (7) (with A = A b  from (9)). One must now use the fact that the 
U(&,,)  depend on the P,,. Thus, in this case of classical limit, we find after some work 

FL- '=(~TB)- '  I_wdk~n(/3w(k))-(27rp)-2 I_m dq[w(q)]-' J w  -W dk 
cc a2 

W 

X A d k  4)d(ln ~ ( k ) ) / d k + ( 2 7 r P ) - ~  5 dp[w(p)l-' le dq 
-a2 -W 

One can then see this is precisely the iteration of (1 1) in the classical limit! Thus the 
periodic boundary condition (7) in its classical form ensures that the non-linearity 
(CC yo) emerges in the expressions for the free energy. It is easy to generalise the 
analysis through (15) to the quantum case by using the quantum forms ( 5 )  with (6) 
for 2. It is convenient here to impose the oscillator WKB quantisation conditions 
8 P,, do,, = 2 r n ,  so P,, = n, a boson number. This way we readily regain the Bose forms 
(11) for the quantum sinh-G exactly. The Fermi forms follow as before. 

Evidently the crucial content of the argument is the constraint (7) imposed by 
periodic boundary conditions. Obviously it generalises the BA condition [5]: indeed, 
if P,, is a fermion number 0, 1 and A is Af, (7) is exactly the allowed mode condition 
[5]. On the other hand, the P,, for the Bose form are boson numbers and in the classical 
analysis of the functional integral though (15) the P,, are the usual action variables, 
while the alternative analysis through to (11) shows that the classical limit can be 
obtained directly by interpreting both the f d k  and the p dk (which corresponds to 
P,,) classically in terms of Maxwell-Boltzmann statistics. Thus the periodicity condition 
(7) seems to be a major generalisation of the periodicity conditions of BA and QIM. 

Every point of this analysis has its generalisation to the quantum and classical 
statistical mechanics of the sine-Gordon (s-G) equation. We shall report all of this in 
another communication [8]. 

One of us (RKB) is grateful for the support of the 'integrable models' programme at 
the Institute for Theoretical Physics, UCSB. Both RKB and DJP are grateful to the 
UK SERC for support. 
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Note added in prooJ The work of Fowler and colleagues on the classical limit of the BA thermodynamics 
for quantum s-G is reported (Chen, Johnson and Fowler 1986 Phys. Rev. Lett. 56 904 (erratum 56 1427)) 
for the case 8ny; '  = n, an integer. The different calculation for 8ny;' = n + E ( E  an infinitesimal, > O )  is 
given by ourselves (Timonen et a/ 1986 Phys. Rev. B to be published). Results coincide with the analytic 
continuation of the result (13) of this letter as found in [8]. 
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